会员
收获,不止Oracle
计算机网络计算机理论、基础知识24.3万字
更新时间:2018-12-27 17:59:40 最新章节:11.2 淡定,规范少做无谓事
书籍简介
本书通过重现梁老师栩栩如生的课堂,以及穿插其中的活泼有趣的故事,介绍了Oracle相关的知识,包含逻辑体系、表、索引和表的排序几大部分。除此之外,分享了很多思想和案例,透过这些,希望读者们能领悟解决工作中遇到的实际问题的思路、规范,少犯错误。
上架时间:2013-05-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
梁敬彬 梁敬弘
- 会员在这本书里读者将会跟随作者一同对Oracle数据库的相关知识进行梳理,然后共同提炼出必须最先掌握的那部分知识,无论你是数据库开发、管理、优化、设计人员,还是从事Java、C的开发人员。接下来作者再将这部分知识中最实用的内容进一步提炼,浓缩出精华的部分,分享给大家。这是二八现象的一次经典应用。这部分知识就是Oracle的物理体系结构、逻辑体系结构、表、索引以及表连接五大部分。通过阅读这些章节,数据库17.8万字
同类热门书
最新上架
- 会员本书共共15章,主要包括多源信息融合处理理论与方法及多源信息目标检测、识别和应用两部分内容。书中具体讲述了多源信息融合处理的基本概念以及多源信息融合发展的核心理论方法,如Dempster-Shafer证据理论等;介绍了多源高冲突信息鲁棒性证据推理方法、多辨识框架下异构证据融合方法以及多值迁移融合方法等多种融合技术;给出了多源信息融合的典型应用,特别是在不确定数据分类、多源信息融合检测与识别领域的实计算机17万字
- 会员《Audition音频编辑标准教程(全彩微课版)》以AdobeAudition2022为写作平台,用通俗易懂的语言、精心挑选的实用技巧、翔实生动的操作案例,对AdobeAudition这款主流的音频处理软件进行了详细的阐述。全书共9章,内容涵盖音频知识、Audition入门基础、工作区与显示控制、音频的录制、音频的编辑、噪声的处理、效果器的应用、多轨会话、后期混音及输出等方面的知识、技巧,在需计算机8.1万字
- 会员《剪映短视频剪辑与运营标准教程(全彩微课版)》围绕剪映短视频的创作展开,由浅入深、全面系统地对短视频的拍摄、剪辑、发布、运营等环节进行介绍,不仅能让新手制作出精彩的短视频,还可以让有一定后期剪辑基础的读者掌握更多创意效果的制作方法。《剪映短视频剪辑与运营标准教程(全彩微课版)》共9章,内容包括短视频剪辑基础知识、素材拍摄技法、短视频剪辑工具—剪映的基本功能、短视频字幕处理、音效的添加、视频转场特效计算机6.3万字
- 会员《重构知识:在线知识传播的疆域、结构与机制》旨在探究社会化媒体知识分享平台的知识分享行为规律、知识疆域结构特征、知识构建的动力机制以及知识普惠的技术实现。依托于当前人文社会科学新文科建设总体要求,本书基于传播学理论视野,利用信息科学计算技术,结合复杂网络分析框架,致力于解决当前传播学现实问题。具体而言,本研究旨在探究基于互联网技术的知识传播,提高知识传播效率,推进知识普惠,探究信息技术能够惠及广泛计算机11.1万字
- 会员本书以简洁的语言介绍了使用Word和InDesign编辑与排版文档所需掌握的主要功能、操作方法和实用技巧。本书提供了动手实践案例实战疑难解答几个栏目,以便增强学习效果,使读者可以更好地将理论知识与实践相结合。本书共9章,内容分为Word和InDesign两部分:Word部分中的内容主要包括文档基本操作和页面设置、文本编辑和格式设置、创建和设置表格、插入和设置图片、图文表混排、创建和使用样式与模板、计算机9.9万字
- 会员《细说机器学习:从理论到实践》从数学知识入手,详尽细致地阐述机器学习各方面的理论知识、常用算法与流行框架,并以大量代码示例进行实践。本书内容分为三篇:第一篇为基础知识,包括机器学习概述、开发环境和常用模块、特征工程、模型评估、降维方法等内容。本篇详细而友好地介绍机器学习的核心概念与原理,并结合大量示例帮助读者轻松入门。第二篇为算法应用,涵盖机器学习最重要与高频使用的模型,包括K-Means聚类、K计算机17.6万字
- 会员本书内容是在充分利用偏最小二乘原理优势的基础上,重点研究改进与优化偏最小二乘的不足方面,使其更好地适应中医药数据分析。主要内容包括分别引入非径向数据包络分析和降噪稀疏自编码器优化偏最小二乘的噪声处理,使其处理缺失值和噪声更有效;分别引入特征相关、L1正则项和灰色关联优化偏最小二乘的特征提取,实现有效降维和提取特征子集;分别融合受限玻尔兹曼机、稀疏自编码器、深度置信网络提取非线性成分,优化偏最小二乘计算机10.5万字
- 会员本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍计算机12.5万字