图灵的大教堂:数字宇宙开启智能时代
更新时间:2019-01-01 00:30:16 最新章节:附录 主要人物
书籍简介
1936年,时年24岁的图灵宣称:“发明一台可用于计算任意可计算序列的单一机器是有可能的。”在《图灵的大教堂》一书中,作者乔治·戴森着重介绍了一小群人,为首的是供职于新泽西州普林斯顿高等研究院的约翰·冯·诺依曼,他参与建造了最早的一台计算机,以实现艾伦·图灵提出的通用机的愿景。他们的工作打破了用于表意的数字和用于运算的数字之间的区别,世界因此而改变。科学家们使用5千字节的内存(相当于现代计算机桌面上显示的光标所分配的内存大小),在天气预测和核武器设计方面,都获得了前所未有的成功。同时,他们还利用空闲时间解决各种问题——从病毒的进化到恒星的演变。戴森教授的叙述既具有历史意义,又富于预见性,为第二次世界大战后期数字宇宙的爆炸提供了新的且重要的信息。代码和计算机的兴起伴随着两大历史性的发展:生物学自我复制序列的破译和氢弹的发明。最具破坏性和最具建设性的人类发明同时出现并不是巧合。
译者:盛杨灿
上架时间:2015-05-01 00:00:00
出版社:浙江人民出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
(美)乔治·戴森
同类热门书
最新上架
- 会员人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2计算机14万字
- 会员《PyTorch深度学习与企业级项目实战》立足于具体的企业级项目开发实践,以通俗易懂的方式详细介绍PyTorch深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。《PyTorch深度学习与企业级项目实战》共分18章,内容主要包括人工智能、机器学习和深度学习之间的关系,深度学习框架PyTorch2.0的环境搭建,Python数据科学库,深度学习基本原理,计算机10.8万字
- 会员《AIGC:让生成式AI成为自己的外脑》针对近期较为火热的AIGC技术及其相关话题,介绍AIGC的技术原理、专业知识和应用。全书共分为九章。第一章介绍AIGC技术的基本概念和发展历程;第二、三章介绍AIGC的基础技术栈和拓展技术栈;第四、五章分别讨论了AIGC技术在文本生成和图像生成两个领域的现状和前景;第六章列举了目前较为热门的AIGC技术应用;第七章描述了AIGC的上、中、下游产业链及未来前景计算机12.8万字
- 会员本书作为文心一言的学习指南,全面、细致地介绍了文心一言PC端和App的各项功能和使用方法,力求通过简洁明了的语言和图文并茂的形式,让读者快速掌握文心一言的各项功能。全书共8章,首先简单介绍了人工智能发展的几个阶段及文心一言的相关研发背景;随后介绍了文心一言的基础页面及功能等内容,以及文心一言在学习、工作、生活娱乐方面的应用及相关案例;接着介绍了文心一言的插件,以及文心一言App的功能和使用技巧;最计算机10.7万字
- 会员《PyTorch深度学习应用实战》以统计学/数学为出发点,介绍深度学习必备的数理基础,讲解PyTorch的主体架构及最新的模块功能,包括常见算法与相关套件的使用方法,例如对象侦测、生成对抗网络、深度伪造、图像中的文字辨识、脸部辨识、BERT/Transformer、聊天机器人、强化学习、自动语音识别、知识图谱等。本书配有大量案例及图表说明,同时以程序设计取代定理证明,缩短学习过程,增加学习乐趣。计算机15.2万字
- 会员本书主要介绍如何通过动态系统学习控制律,从而使机器人具备实时反应能力。本书首先介绍机器人学习数据的收集方法,然后重点讲解使用动态系统学习控制律的核心技术,使用动态系统进行轨迹规划的方法,以及使用动态系统进行柔性控制和力控制的方法。本书提供大量应用示例,包括机械臂、拟人手和仿人机器人的全身控制等。本书要求读者熟悉关于机器人控制的基础知识,并熟悉机器学习、统计、优化以及动态系统等相关内容,适合作为高等计算机20.3万字
- 会员本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字
- 会员随着ChatGPT等大语言模型的迅速发展,大语言模型已经成为人工智能领域发展的快车道,不同领域涌现出各种强大的新模型。开发者想要独立构建、部署符合自身需求的大语言模型,需要理解大语言模型的实现框架和基本原理。本书梳理大语言模型的发展,首先介绍Transformer模型的基本原理、结构和模块及在NLP任务中的应用;然后介绍由只编码(Encoder-Only)到只解码(Decoder-Only)的技术计算机6.6万字