会员
利用Python进行数据分析(原书第2版)
更新时间:2019-01-05 06:07:48 最新章节:B.6 附录小结
书籍简介
阅读本书可以获得关于在Python下操作、处理、清洗、规整数据集的完整说明。本书第2版针对Python3.6进行了更新,并增加了实际案例向你展示如何高效地解决一系列数据分析问题。你将在阅读过程中学习到最新版本的pandas、NumPy、IPython和Jupyter。
品牌:机械工业出版社
译者:徐敬一
上架时间:2018-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
(美)韦斯·麦金尼
- 会员本书是Python数据分析经典畅销书的升级版,由Pythonpandas项目的创始人WesMcKinney撰写。本书自2012年第1版出版以来,迅速成为该领域的权威指南,并且为了保持与时俱进,作者对本书内容进行持续更新,以摒弃一些过时、不兼容的工具,添加新的内容来介绍新特性、新工具及方法。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效程序设计11.5万字
同类热门书
最新上架
- 会员随着数字化的发展,数据逐渐融入生产、分配、流通、消费和社会服务管理等环节,为数据的拥有者或使用者带来经济效益,成为一种新型的生产要素,给生产方式、生活方式和社会治理方式带来了深刻的变革。本书主要介绍数据要素化时代的数据治理。本书分为5篇。第一篇“数据治理新趋势”介绍DataOps的发展及实践,产业级数据治理新趋势,数据治理的场景化、工程化和智能化,以及数据资产的安全运营。第二篇“新理论、新方法和新计算机12.1万字
- 会员本书是一本介绍分布式数据库基础内容与应用的大数据专业类图书,力求培养读者对分布式数据库的应用技能。本书共11章,采用原理+代码实例+综合案例的编写形式,清晰明了地介绍分布式数据库的原理、基础应用、进阶应用及主流工具的使用方法、应用场景,以理实结合为编写要求,让读者能够轻松学习和掌握分布式数据库的内容。本书可以作为高等院校计算机、网络技术等相关专业的教材,也可以作为数据库相关工作的从业人员的参考用书计算机14万字
- 会员本书从需求规划、需求实现到可视化展示等,遵循项目开发的主要流程,全景介绍了电商行业Flink实时数据仓库的搭建过程。在整个项目的搭建过程中,介绍了主要组件的安装部署、需求实现的具体思路、问题的解决方案等,并穿插了大数据和数据仓库相关的理论知识,包括数据仓库的概念介绍、电商业务概述、数据仓库理论介绍和数据仓库建模等。最核心的内容是代码中对Flink的灵活应用,为读者展示了Flink处理数据的多种可能计算机13.1万字
- 会员《企业级大数据项目实战:用户搜索行为分析系统从0到1》基于真实业务场景,以项目导向为主线,从0到1全面介绍企业级大数据用户搜索行为分析系统的搭建过程。全书共6章,第1章讲解项目需求与架构设计,详细阐述项目数据流与系统架构;第2章介绍大数据项目开发环境配置,手把手带领读者配置操作系统、Hadoop集群与相关工具,为后续项目实施打下基础;第3~5章逐步实现项目需求,第3章讲解用户行为数据采集模块的开发计算机9万字
- 会员《SQLServer从入门到精通(第5版)》从初学者角度出发,通过通俗易懂的语言、丰富多彩的实例,详细介绍了SQLServer开发所必需的各方面技术。全书分为4篇共19章,内容包括数据库基础、SQLServer数据库环境搭建、创建与管理数据库、操作数据表、SQL基础、SQL函数的使用、SQL数据查询基础、SQL数据高级查询、视图的使用、存储过程、触发器、游标的使用、索引与数据完整性、SQL中计算机14.1万字
- 会员本书旨在向广大有志于投身芯片设计行业的人士及正在从事芯片设计的工程师普及芯片设计知识和工作方法,使其更加了解芯片行业的分工与动向。本书共分9个章节,从多角度透视芯片设计,特别是数字芯片设计的流程、工具、设计方法、仿真方法等环节。凭借作者多年业内经验,针对IC新人关心的诸多问题,为其提供了提升个人能力,选择职业方向的具体指导。本书第1章是对IC设计行业的整体概述,并解答了IC新人普遍关心的若干问题。计算机29.9万字
- 会员这是一套数据指标体系全流程构建(从规划、框架设计、数据采集加工到应用)方法论与实践指南。它不仅深入浅出地分享了通用的数据指标体系构建策略,还通过多个行业实例展示了具体操作方法。书中从数据采集入手,借助BI工具Superset实践构建过程。本着“一切技术都是为业务服务的”这一宗旨,本书除了包含数据指标体系构建相关内容外,还结合统计学原理及Excel、Python等工具,深入剖析数据指标波动对业务的影计算机12.7万字
- 会员本书围绕数据挖掘竞赛,讲解了各种类型数据挖掘竞赛的解题思路、方法和技巧,并辅以对应的实战案例。全书共11章。第1章介绍数据挖掘竞赛的背景、意义和现状。从第2章开始,介绍了各种不同类型的数据挖掘竞赛包括结构化数据、自然语言处理、计算机视觉(图像)、计算机视觉(视频)、强化学习。每种类型的数据挖掘竞赛包含理论篇和实战篇:理论篇介绍通用的解题流程和关键技术;实战篇选取比较有代表性的赛题,对赛题的优秀方案计算机6.7万字