- 高等数学·上册(第2版)
- 罗敏娜 王娜 王涛
- 10字
- 2021-03-27 22:33:20
§2.2 求导法则与导数公式
2.2.1 函数的和、差、积、商的求导法则
定理1 设函数u=u(x)及v=v(x)在点x处可导,C为常数,则
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077001.jpg?sign=1739064420-4JhIFL8j71vKi5ppViO7vI9t9gFMSpRp-0-ab865a95c121ae52047c7f84110640f0)
下面只证明(2),其余留给读者作为练习.
证 由于可导必连续,有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077002.jpg?sign=1739064420-KK816IJ6ScGHPuVVBiknjQRlTCS1eYbM-0-82662dd01291cb094c3417dacaaa3009)
例1 求函数y=tanx的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077003.jpg?sign=1739064420-ujOz2YnUjHK1SlKrD4A2Y4H1az0pyDif-0-5d1db937017436d68e7a4d7c75a1c2d0)
即 (tanx)′=sec2x.
类似可得
(cotx)′=-csc2x.
例2 求函数y=secx的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077004.jpg?sign=1739064420-HNwjgE5Wp8G5WwZ1XbyMlxMQqNi0CoWv-0-80fbf0cd6dada64c46ea7ede13f25293)
即 (secx)′=secxtanx.
类似可得
(cscx)′=-cscxcotx.
例3 设y=3x3+5x2-4x+1,求y′.
解 y′=3(x3)′+5(x2)′-4(x)′+1′=9x2+10x-4.
例4 设,求
解 f′(x)=3x2-3(excosx)′=3x2-3(excosx-exsinx)
=3x2-3ex(cosx-sinx).
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078001.jpg?sign=1739064420-HsFwz0rlA3s2LWGSuBkNlVxaVyszDMWJ-0-07f5eb23b0c923ccbe09c7c079ac49a5)
例5 设f(x)=x2lnx,求f′(x).
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078002.jpg?sign=1739064420-Yur2PBKVqa9KiLWSJSU7CnKm0RJxMRRy-0-fbfd5f7b7ee7cea5fcc709b032543700)