- 高等数学·上册(第2版)
- 罗敏娜 王娜 王涛
- 254字
- 2021-03-27 22:33:20
2.2.2 反函数的求导法则
定理2 如果函数x=f(y)在区间Iy内单调、可导且f′(y)≠0,则它的反函数y=f-1(x)在区间Ix={x|x=f(y),y∈Iy}内也可导,且
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078003.jpg?sign=1739419274-0mDNELVXd7H0srUGA6E3ZeTCgoWFGqyB-0-64d7078e8bd16541f94cc507059b9960)
证 由于x=f(y)在区间Iy内单调,故其反函数y=f-1(x)在区间Ix存在、单调且连续,因此,对于任何x∈Ix,当Δx≠0时,
Δy=f-1(x+Δx)-f-1(x)≠0,
从而
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078004.jpg?sign=1739419274-PzveixbgQArmJuzpmsdPtuBLyYU0rqx8-0-f558a8c6e5441ddaed6c546d76e7ba6a)
由于x=f(y)与y=f-1(x)的连续性,即Δx→0时,Δy→0,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078005.jpg?sign=1739419274-2zFQek7cVO6RkiRZqwqIjp2nDxWY04wB-0-238b7b2bc0de2f4db41a9376a599f876)
例7 求y=arcsinx的导数.
解 设x=siny,,其反函数为y=arcsinx,由公式
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078007.jpg?sign=1739419274-7QmeFnjh2Zut0Xsa7UKIf3ZnKGPcoBQo-0-f31403f4de1b2a9df36a60e04c7b09ed)
又由于,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078009.jpg?sign=1739419274-B00qedhsF42XIwlXx64BFQGREMSXR25U-0-4f3d601079d5d1ea3e5eb9575a984832)
类似可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079001.jpg?sign=1739419274-dwqBlZeEXpAS5riqARzZsBarZJvsXE3W-0-cef941d841f587e17f364f35a496d5a9)
例8 求y=arctanx的导数.
解 设x=tany,,其反函数为y=arctanx,由公式
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079003.jpg?sign=1739419274-H9mDui2AYl4Ro2IjaDMjfDX9VM6MPE24-0-7ee90a897acb32b2c8a175d6fa66f1f3)
又由于sec2y=1+tan2y=1+x2,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079004.jpg?sign=1739419274-0n82SpIHPVrDDGdBXautWa7OSEpZMhIp-0-f527ce9f9eb346b3d6e0766131ee7b65)
类似可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079005.jpg?sign=1739419274-sUmAqqQRHTaN0SWOBNzRrCzrV9VPgugP-0-617bfc5c0bc4a60814f6c6a177ff80b1)
例9 求y=logax的导数.
解 x=ay与y=logax互为反函数,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079006.jpg?sign=1739419274-m4oS32xJZmLtcumhbHkCwcOil3qwYY1x-0-568672cc563fc5042672dd8a5dd8a8d0)