- 复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解
- 圣才电子书
- 1657字
- 2021-05-28 21:10:08
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1739406695-VliW4usnCnRl89fOIbzzkccnNbBVdCu7-0-1224b46496189e7ac9561a10520f858e)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1739406695-vTbIysojYatF7Bm0zcu3NzfMMVe6oBiJ-0-a9e7ff7f4d464b6eeed9683c87398fd9)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1739406695-IGSvmjHd03onZtxz2jqyoFycsiD1sq8q-0-a6a27251c8c33fcc6c530ccaf89475e7)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1739406695-3vOnhrlURVDBGtK7l6IWaT6Pve1v1PBz-0-e9f275f1b3aaf218d5bddcce3f982dbd)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1739406695-aSibyN30o63UAJIvonBiDX16ozDfE6Fk-0-d5db72db10e26ef8f8a891917dc7d11d)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1739406695-fNsNI1QHjRQW8FCOK1XoYS7FcAiTITsb-0-8fd77d35d47c957574d0160fa1ee5bae)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1739406695-Euj8YYV3xfnglVPzumKQIjTzr9sjiMpM-0-1f57014d60e9e414bf299ef33837aa47)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1739406695-5pZGUdemXiBW3dWtTfsklR61pPezldnw-0-bb4434f3fd9279c74ddce74dc40c2d4c)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1739406695-pOZW9ilM2IlNl5QfYuUO5zTPCxtvrDP7-0-74175777d4f9cc4c2bb58f03ae66e4f2)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1739406695-3JOfnqnZJjMrLZdvFlsvKHikwRiVtuFz-0-63d421b24442d8642c53a8c858131383)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1739406695-pPDCf5bZkK5keRuo5XRnLzwbPQcmxLx8-0-243abebf2ef7aa18f05be37eb38a919b)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1739406695-lUmieWqDB3IqkQmS5FnYoOCvtV1GWaH5-0-01fb14c3dcf0d61b3f336a6aa7797c2a)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1739406695-vpN96tTbpIfFGujuIwbNnkC5WcDem4B1-0-e01fa5415f862b7e8a58d1f42f62680e)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1739406695-ToEpXCL6LK0EOiIrtViC0g7Ps7s2krGe-0-4459c81107ff48246b628cdb37635556)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1739406695-jbAfrPmdZonfN9f7JTaWlny53ONkmpdo-0-13430fa92b3227514a30db9c14cc72e2)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1739406695-0YvKYagsW4Up9cpYsa3vG03vU1ISx7r7-0-e681a8ca37bb3bf8ca28400da93162e8)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1739406695-QOJEVrDMLZTRfZ52om0H5cPhstqCet9Q-0-810ac40b4541264f75b0071a53d4656e)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1739406695-UnFFsuzrcdHsdb8oSKlkF8tAUZ4HW7Gk-0-601e16f96e3324255c88c67ac96044d5)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1739406695-iwO7BV2E884nHi6wjUheUL6QtONzHkbH-0-44bab2a446cb66a0c2aea3f65e2c1dc3)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1739406695-g2wZnZzbfqsQIRhhcdwd4pePyOqkCNDx-0-98950c0f9c67c6752855287d252b29fe)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1739406695-g4POuXVpYfOPDsAJl5sG6owU5SCyym3F-0-7dd5e5288dd94763fa3b13410b3b6757)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1739406695-cImEG1PLJDoPeF2YQkfamEu1bvxX3l0j-0-09ec83c231ca1f585b8f11cc1087b2e6)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1739406695-PWUjnY8C8mRm7pUJhzcvjXORRRNqe7Au-0-1d7b5e91c3b0f670430c8360bfdae9e6)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1739406695-uUCNWEG5qQsP9B1SdOuNNS3JEX1jgVcK-0-e3af06ef102d26af6890459013ce737e)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1739406695-2dtX35lpor7JyU2GdlfzIb78JjKUj0OM-0-ace75ebc04a4630b0bab76e31d9565fa)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1739406695-DQY1EHkAKA7B5FC753OyTJSvnYbcQ5Lk-0-6843b601df24da25a56322368f2973a9)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1739406695-BUcR0RdzFsooEvtEUGeN7S8K4EECOAk7-0-c85fb0c0dac37ccb7a3be2078c703961)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1739406695-tiDvLSuizYPLYnT7CrcLlJHqFUssExDS-0-b10bdeab0f7012b665c21372856300b8)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1739406695-8TVRqLhumBKQjxcC5po3zcJeEx0FpSL9-0-ef56b928f14cc9882a50f44777916305)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1739406695-9t1L4D5ai5VtC94ds2Hw9rhUklbhna2T-0-fc4083bd77b7b1e91230048708fcce56)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1739406695-vrVMCLwXC1vmp7cEtXvrCfJx3unkwgMj-0-6289989adaea478e1b439ffdb742cdeb)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1739406695-tlSFJyi6GPREgQnHwurBqEFtbcssKWBR-0-ec11a88529634282046817127ebcbdda)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1739406695-IgO2mvYWm9DgvZikfyMrWzO9DKkQqEm4-0-71d9dda75f8a86f35d1577ffcba7181c)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1739406695-9tPv0OG00Mg5Nn0cvjH1ldgZ2iaBcxtr-0-de3030d8e3021cfd8f3d48d873b107e3)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1739406695-oetSKDx7RWWkOiboZxh2F5tV3jWbgYlL-0-30e10869eb9c5820f3439375ee7e91ad)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)