- 移动机器人原理与设计(原书第2版)
- (法)吕克·若兰
- 4922字
- 2021-11-12 17:50:54
1.6 习题参考答案
习题1.1参考答案 (伴随矩阵的性质)
1)矩阵Ad(w)的特征多项式计算起来相对简单,如下式所示:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/25t4.jpg?sign=1739600880-t2j3WqHszqO65CpytowPe3boG4mcZl8e-0-d7dc28214b8846624d956653bb00d667)
由此可得其特征值为{0,||w||i,-||w||i}。最后可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t1.jpg?sign=1739600880-erqNzNipKwhjNHgP3o3fOeEge8aCUyy8-0-a8f4c52255868e06af66bafdbeebe0c4)
因此,与0对应的特征向量为w。矩阵Ad(w)是与一个绕w的旋转坐标系的速度向量场相关的。因为轴w不会移动,所以Ad(w)·w=0。
2)①证明x⊥(w∧x)。为此,完全可以证明xTAd(w)x=0,由此可得x⊥Ad(w)x,则有:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t2.jpg?sign=1739600880-BxC3qU0AAtFSBxXadudc1VSRQURB301e-0-aa1021f5bb4a10400beca4e59c6fa735)
②因为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t3.jpg?sign=1739600880-hWhD5ar6QhNAlctLrDLuWQVKERoE8mb0-0-c3ff3aab5b327d593f8c4c92e902a536)
可得w⊥(w∧x)。
③很容易证明:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t4.jpg?sign=1739600880-bYDXKG8uh3v3o90K2ggypT7q2KhY8hDZ-0-4938fe48f4392f6f9cc3511bb3e86ad3)
为此,需要对上述两个表达式进行转化并证明其相等。该行列式的正性表明该三面体(w,x,w∧x)是正三面体。
3)由w、x和w∧x形成的平行六面体体积为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t5.jpg?sign=1739600880-LJBiZ3UvjdQgwODgeaelMR6VKxKRwry7-0-317146fd3cee4830457eb91c7bb6ad83)
然而,由于w∧x正交于w和x,因此该平行六面体的体积便等于其底面积A乘以高h=||w∧x||,即
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t6.jpg?sign=1739600880-rUNK7iURy1qd1yk67vPubyOiqXKTMh1D-0-451e62dda4ecfc83245b01009a5b036f)
令v的上述两个表达式相等,可得A=||w∧x||。
习题1.2参考答案 (雅可比恒等式)
1)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/26t7.jpg?sign=1739600880-yyS9YKtPk3Mq4WB1TQPPRfCfS1um2ASV-0-29bd83eb37a38900c74aed3fde1ff73c)
因此,对所有c而言,都有:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t1.jpg?sign=1739600880-BVuRjI0d86LacTKBwnwA2qDYTxkDigRo-0-d9d85a399494a26baab0506cb294dc7d)
即
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t2.jpg?sign=1739600880-QZ6Wo0Cj34rvCnMU2IKH4lFcXHOWwYxI-0-e8c474325aebf2fdf020faa9bcfd9335)
2)将上式简写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t3.jpg?sign=1739600880-FO6cPldNjirR4yjldn7u6svGACpkT8MI-0-21591931d011d5f366533659cce9a68e)
3)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t4.jpg?sign=1739600880-JbXKWBL3AVfg9SWdGjTASFYhByPBkd83-0-c4508ee345a508eb7cda6c438db318cb)
因此,对应于一个跟随斜对称矩阵[A,B]=AB-BA无限小的旋转。
综上,如果在一个空间探测器中,只能用惯性盘产生两个跟随A和B的旋转运动,便可生成一个跟随[A,B]的旋转,该无穷小旋转关于B,A,-B,-A,B,A,-B,-A,…交替进行。
4)验证烦琐,在此不做说明。值得注意的是,通过这个结果能够推导出具有加法、括号和标准外积的斜对称矩阵的集合也是一个李代数。
习题1.3参考答案 (范力农公式)
该刚体上的一点x的位置满足状态方程:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t6.jpg?sign=1739600880-Kd3g3C2Qe7Ne9cDWoreP73KCaI774zVc-0-b4eabd770d9c010c47887dfc54f21c28)
式中,w平行于旋转轴Δ,||w||为该实体的旋转速度(单位rad.s-1),通过对该状态方程求积分可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t7.jpg?sign=1739600880-D7dVZtoP6PnSX9kc0d4ht0j3Xo1cNg5e-0-f5f576b98e0a21f461a110b77420baea)
也可利用在习题1.4中所学的罗德里格斯公式得到该公式。该项性质可以用如下事实解释,即Ad(w)表示一个旋转运动,然而它的导数却表示了该运动的结果(即一个旋转)。
习题1.4参考答案 (罗德里格斯公式)
1)完全可以证明:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t8.jpg?sign=1739600880-GqZ08OwYNVuH1n2chvCLChv4cX42b5Xu-0-bba1a5fe5d450911524ff51e875a4bfc)
2)该状态方程的解为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/27t9.jpg?sign=1739600880-NmqfFp39AHm1LWjN2yqfmj9sxGdKzPsT-0-c90b8901131d5f319054b21f82b06c03)
3)在t时刻,该实体已经旋转了||w||·t的角度,那么当t=1时,它便旋转了角度||w||。因此,绕轴w且角度为||w||的旋转R可由下式给出:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t1.jpg?sign=1739600880-xoXA55Q0FTY0nH6t0gBBIIWE1XenY3UX-0-80b64c52b974da66829f2aa6bb6785e0)
4)A的特征多项式为,特征值为0,i||w||,-i||w||。特征值0所对应的特征向量与w共线,由于在旋转轴上点的速度为0,故而这是合乎逻辑的。
5)可以通过特征值对应定理得到R的特征值,因此等价于0,i||w||,-i||w||。
6)一个绕向量w=(1,0,0)且角度α的旋转表达式为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t3.jpg?sign=1739600880-VMIPGmuIWUAOAcesk6CZ9myWJgMfkzBD-0-e63230dba855e16d1ce12060c5630b88)
7)罗德里格斯公式表明绕向量w角度为φ=||w||的旋转矩阵可由下式表示:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t4.jpg?sign=1739600880-vJisbufEvU1uUNzXotTeAsW79s6DKksr-0-9ad631f0f8795d1b424ffb93d69f5383)
习题1.5参考答案 (罗德里格斯公式的几何逼近)
1)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t5.jpg?sign=1739600880-hERez9ca5OidZ1i14Kpb4iXbTFxqF4ap-0-829a5ef634869562a6dfcddd34ebb20b)
因此,罗德里格斯公式为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t6.jpg?sign=1739600880-sr9ihJXC7EW1BM52oKNK46lRIQ9bXDmn-0-7eb4966c369307f5641f8bee5e942ef4)
2)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t7.jpg?sign=1739600880-iR0HWQDflv67CxVk2cdriRaIXOuN6gzr-0-58ae1030ac14e6a99fed8784baadf92e)
因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t8.jpg?sign=1739600880-JxiC9Ws6y1bdmQMqrmWBODDCJB6RiUtT-0-e5178a346d6f95c8b92b72dea422baaa)
故而,罗德里格斯公式也可写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t9.jpg?sign=1739600880-ALQwc3fghuP81v97CRGwHEraXopVmmx2-0-34cf014e947309bd1482a35602b0d855)
可以通过如下式所示的旋转矩阵去表示算子Rn,φ:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/28t10.jpg?sign=1739600880-MknuRROy59Ellkig6KVuybOzZhC9T1I8-0-5d427560f20a995548e83b100399de81)
或用其改进形式:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t1.jpg?sign=1739600880-gU74FCjOkYVMYmPYwINaej9G3T5yKFHG-0-a4dbf6b080ec21fdd0dd16030500e58f)
3)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t2.jpg?sign=1739600880-Xo5E8oYzz4SWEVx9B8Ff16Fqp53VRMGr-0-3621ad0c89082ec008a06517eaf1294c)
向量Rn,φ·u和形成了菱形(罗德里格斯菱形)的两边,其向量:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t4.jpg?sign=1739600880-re7myR0z4Zmca5YWG8xjdENddCyio89g-0-0628a20f2b74f80f532772b664f94f4a)
对应于菱形的对角线。
4)该轨迹形式为R(t)=exp(tA)·Ra,且必须要找出一个斜对称的A(使exp(tA)是一个旋转矩阵),对于t=0,有R(0)=Ra,对于t=1,有R(1)=Rb。因此,必须要解出exp(A)·Ra或,其中A是斜对称的。可写为
,但矩阵的对数不是唯一的。在该练习题中,假定所有矩阵均为3×3维的。为找出两个旋转矩阵Ra,Rb之间的插值轨迹矩阵,我们取前一个问题的结果并执行以下操作:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t7.jpg?sign=1739600880-q0tcZaJUJgd8RiXUnGAY5jtygYbSjojd-0-3bedd491aaa310567813ee3dc34f9c3f)
进而可得R(t)=exp(tA)·Ra。在此可清晰地看出,找到一个矩阵A使得的解不唯一。例如,本可采用A=(φ+2kπ)n∧,k≠0,但此时从Ra到Rb必须绕几个弯才行。
5)回顾正弦和余弦公式的麦克劳林级数展开为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t9.jpg?sign=1739600880-fnIId6QqvkfxVeW08iSa9KnWojn1uZGR-0-70ace6626f2a1e97f528b21a7efe80da)
令H=Ad(n),由于n为矩阵H的一个对应于特征值0的特征向量,则有H(n·nT)=0。此外:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/29t10.jpg?sign=1739600880-soyWwuwZ28gXfFwJsIQRN3CC7iAezV6J-0-c771ebe3128e0712a8221f8db26f8a87)
因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t1.jpg?sign=1739600880-SnRUme3iM5jodIJKOac0r5tO73ZkTxKb-0-419278f5e114b851ac1af1bebcec5633)
那么,可将罗德里格斯公式写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t2.jpg?sign=1739600880-BTtCU5sjDNCgP9sYhoaud4JbQ4WCVPO6-0-3484c7b15f354c8d65aa7c5db88b4798)
即
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t3.jpg?sign=1739600880-CHjn9HZg4N08KSM7Ac3T1BGaGou9PRXS-0-82f6b768ee8d64d7fc68bfea87ed41c2)
习题1.6参考答案 (四元数)
1)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t4.jpg?sign=1739600880-IzIplvfJCyXsUZT66btX2tqsVNxLjcJW-0-00e1d0f292ad34864c8b0f6e4f5a3ae3)
注意,乘法是不可交换的。
2)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t5.jpg?sign=1739600880-l0ulw9G66cVdYq5kyNm4bdcipKNCQXeU-0-8c8da7b25272ae7c7e47eba7f46b1b5f)
3)因两四元数和
对应于相同旋转,则:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t8.jpg?sign=1739600880-gKtlfjoNu4zOKtR1BiFLlS3bIsQmN6WZ-0-9919831653bb558eccb15de7235c8dcd)
4)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t9.jpg?sign=1739600880-GPqnwaHKMI59Iadqk52JndcPQYITK0KS-0-fa070373f7cda3a19d99fc42b4bc4e08)
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/30t10.jpg?sign=1739600880-8AkQA4r09lnJ2yWXrdBAhAJWAPLXfv9U-0-dd3dc1194ac31b72829004d71e75e7c3)
5)①由于旋转很简单,第一种方法是直接通过手动移动一个简单的对象来得到结果。可获得一个相对于(0,1,0),角度为的旋转。
②关联与建立旋转欧拉矩阵R。可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/31t3.jpg?sign=1739600880-96AubaawYT2MIMB4aIlF6VuQ94Lo4H3I-0-ceecbf7697f1a7ef717f8ce3da4b04fc)
然后取R的一个与特征值λ=1相关联的归一化特征向量v=(0,1,0)T,旋转R可以通过一个绕v的角度为α的旋转得到,可利用式(1.9)计算角度α:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/31t4.jpg?sign=1739600880-9WeJErbEZd36zAK8ks9vkOOB9SXPwrC1-0-691b78665a39d4cf6e49b47f8a83911c)
式中,所选符号满足eα·v∧=R,可得。
③在此,利用四元数法可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/31t6.jpg?sign=1739600880-pNYrlICWkw7CUzJh8mBtlVHQBzKVGCNK-0-ac1526d8161bd4aec838ee5706fb07c8)
运用所有方法,可得一个绕v=(0,1,0)角度为的旋转。
习题1.7参考答案 (舒勒振荡)
1)状态向量为,为了实现水平运动,则需一个水平力f,根据动力学基本定理,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/31t8.jpg?sign=1739600880-yESwjEygPbj9MGWeAkAJPNA9XJEinYEu-0-2b5a558827f739e9f54c31ea6bf6747f)
式中,且f=2ma。由于
,则该系统的状态方程可写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/31t11.jpg?sign=1739600880-fsUukHaCeq0he5gBx2Rmcq8ELZSYzbYD-0-e54738d953c54825929b703cd5df1a40)
2)如果钟摆保持水平,则对于α=0,便有。即:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t1.jpg?sign=1739600880-einWBC6kACg83Ixcx0zfQSCBqdsPySyC-0-61d9e43f8a017fc2a06127d425f46ac7)
或将其等价为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t2.jpg?sign=1739600880-bocSY5tnr59URnKAltRIl9ouiq9b54ev-0-982a589ab7afe1d42ac7610b54a95de9)
因此,必须使其满足方程。求解该方程可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t4.jpg?sign=1739600880-VR0iDPRsLzx5UPndYlFBRrsdqjXCNrp8-0-da7541996a9f38d72d317c4af8d72aa1)
当1=1时,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t6.jpg?sign=1739600880-tGCKDNcU1rK1r3lWwGuYjH1Uf63L2tcl-0-e36b0f59e075411f96c8cd334383ba86)
3)描述该振荡的方程为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t7.jpg?sign=1739600880-XcQQh3LkT1JQ2emnbmVwbt5hN1Rb1kMa-0-86206cda03d4699768cf016f30821472)
当a=0时,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t8.jpg?sign=1739600880-iUccmhWvd3MJCOkwO1nT8RTZ4oelfiii-0-46aef3f799f77b4dbff6f89f1332d6c0)
该式为一个长=r的钟摆方程。通过对其线性化可得其特征多项式为
,因此脉冲为
。故而,该舒勒周期等于:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t12.jpg?sign=1739600880-ivuxuesRGkZ1X313ZQ4yByVO8NvswIGY-0-b113cfa7f67dc25904a89584eb5656fc)
4)程序如下:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t13.jpg?sign=1739600880-OkkefHV2vlpD5zclJRMUdya1nmCAOTnp-0-0e897131724820de1d9f5e32ac59a5ec)
值得注意的是,对于初值而言,该钟摆总是指向地球中心,否则,它便振荡并将该振荡保持在舒勒频率上。可以用现代惯性单元观测该振荡,并有利用其他惯性传感器获取的信息对其进行补偿的方法。
习题1.8参考答案 (制动检测器)
1)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/32t15.jpg?sign=1739600880-t9p8CDiaeOEi38YhkxdEcn7VaSAGFula-0-23f373b7ff4f115a5663fb27139f121d)
将其表示在坐标系R0内为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t1.jpg?sign=1739600880-a7OeZb6p3ztXCEC1RjSe8AB8BXoAekbl-0-ab6df7f98d7546afe5460bca2c87ea00)
整理为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t2.jpg?sign=1739600880-t96Pqt16lLK5vvLosgDXlQNBAEBA9ekP-0-5823262ee2eddff3f47aebbbc4cf7757)
2)证明:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t3.jpg?sign=1739600880-nIQbJpBBRtAvtRPJYaVn20giLnX9nqJM-0-e81358e59e2cc8d0aedc5ffe88611113)
3)在坐标系R0内,可将向量u表示为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t4.jpg?sign=1739600880-m1fCBQRCKtsHtzkOgA1pANdqQ3tyamwP-0-57f94cc5106fe7101eebb15bd5ff6464)
因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t5.jpg?sign=1739600880-HI4qMIbADBnNrOpnk2o0mUfIAqg4jWj5-0-7a1720d2ef5b8ae2d6bf2c2a7007fff8)
4)已知:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t6.jpg?sign=1739600880-Qz3KAmiezvhlCfcBi9A60QjNh9tOOZo5-0-78dc721c203e2060a8384b7dce2e51ce)
因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t7.jpg?sign=1739600880-Lc9O1fh6Zewmh92wQQbq3RTWR4Jbepzw-0-c9a89803cd361bff722870f655504823)
然而:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/33t8.jpg?sign=1739600880-PkJyIZFH6FNdh6xuM77D2EOieFw2CndC-0-f41b71777528ddc4f818da9eaffb8133)
可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t1.jpg?sign=1739600880-97ollf5hexiEfhL6WpTxGbwKVM957yyO-0-7f463be568fbf4997e853ccfac5c4126)
5)如果满足下述条件,则表示前车正在制动:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t2.jpg?sign=1739600880-M8zJCJuQUYTG3gcUSHlp419efKMwUyou-0-df778c930d5834fd43eda7c26893b6fb)
即满足条件:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t3.jpg?sign=1739600880-yvTtYI5oZuCmYtPjGn3Z3e8YWGrA0qOR-0-b85e4f2523be7fb4b4f3211302cec028)
习题1.9参考答案 (水下机器人建模)
该位置向量的导数可由下式得到:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t4.jpg?sign=1739600880-feHFJ4rj1x8NzXVE3LsxDLQkHIhridbr-0-cdfe258033f43712ccd548dcde5bf4ad)
式中,i1对应矩阵(1.9)的第一列。结合方程(1.12),可将潜艇的状态方程写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t5.jpg?sign=1739600880-95eBx1MuwOT6BwGDh7rqUMhNts5igHPi-0-a6610ca753708d6d2d14ffe4d8205c62)
此时,便得到了一个运动学模型(即其中没有力或力矩),其中并没有参数,因此如果该水下机器人很结实(即不能被扭曲)且其轨迹与机器人轴线相切,便可认为该模型是正确的。这样的模型将用到非线性控制方法如将在第2章提及的反馈线性化。虽然这类方法对于一个很小模型误差的鲁棒性确实很差,但对系统精确模型已知的情况下却非常有效。
习题1.10参考答案 (三维机器人图形)
1)略
2)为绘制在状态x=(px,py,pz,v,φ,θ,ψ)下的机器人图像,构建模式矩阵:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t6.jpg?sign=1739600880-aP1ebesxiCTMFb3ECJyHUtLxdZRk5VBr-0-8fc40941d85588537be9b95a3a5a7069)
并计算转换后的模式矩阵(待绘制):
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/34t7.jpg?sign=1739600880-sISNpGCS4f653Z8sAF8pHO8nIL7zzLyv-0-1397b386bad67c0aaf955e4781009bcf)
绘制三维图形的MATLAB程序如下:
3)采用图1.19所示的欧拉积分法对初始向量x(0)=(-5,-5,12,15,0,1,0)T和控制变量u=(0,0,0.2)T进行仿真。该仿真模拟将在习题2.4中进行,以执行机器人轨迹的控制。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a19.jpg?sign=1739600880-bRHLfJ9R6owPaQCfWA5yLwOurhUIAFXX-0-0fc0bf260c8dc3f22ca7b5004d8a23ee)
图1.19 水下机器人的仿真(有关此图的彩色版本,见www.iste.co.uk/jaulin/robotics.zip)
习题1.11参考答案 (机械手)
绘制机械手时必须一个接一个进行,为此,必须建立基于向量v的平移和绕w角度||w||的旋转。由如下两个矩阵表示:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/35t1.jpg?sign=1739600880-bY31ADiyhr3yAoehe2is6kaorZVkJxi2-0-b7f98733be2c502d371ca2e7efaa21c7)
在该题中,需要沿z轴平移长度r,沿x轴平移长度d,围绕y轴旋转α,旋转θ。它们分别由4×4矩阵给出:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/35t2.jpg?sign=1739600880-bwwKFSOHIlv92eShCppgY9tAMi26nlsj-0-c610644f087f5191a65a49cd0091eed9)
在坐标系q(其组成部分为关节坐标)中的机器人的七个手臂可以绘制如下:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/35t3.jpg?sign=1739600880-iQdEX9DBF39kVflXiM7bp006VVZjfi1R-0-1a8791fd1e6d7f7d7ea068f3cb8ce244)
每个手臂均是用两个齐次矩阵,j
{1,2,…,7}对绘制的。图1.20对应于具有以下参数向量的机器人的仿真模拟:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t1.jpg?sign=1739600880-rTgRV9iHxQgcEOtG7U5uhuSMIetu5XYE-0-50bd7b8b1aa3ec2e6d249db2f549888d)
习题1.12参考答案 (浮轮)
1)考虑欧拉旋转方程:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t2.jpg?sign=1739600880-BeCOsVXm3ek1DWTc8P3Lz8S3IVR2ugQX-0-9a61498ea818189d2711bf637cda42d5)
式中,扭矩τr=0且浮轮没有加速度。由式(1.12)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t3.jpg?sign=1739600880-HS7mWq5ZmUx0JTWAnTVlyp6xlkEBNRIH-0-d2ed93173335189b203993e3088ea553)
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a20.jpg?sign=1739600880-MZDoKZ2nu5zwRRekQqNuDKapS0LP1QCe-0-0379ce7396e9aaf61cbe25acd53e4b9c)
图1.20 机械手仿真模拟
2)对于仿真模拟,取:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t4.jpg?sign=1739600880-17wCtLBaJgu6OfyHR4hNSkVenDKpdI3F-0-5cfdaa3ea540694d937d90d09c9fa7c8)
其结果如图1.21所示,轮子相对于px平移,可从px阴影(黑色)中看到旋转轴振荡,这便对应于该进动。
3)已知:,因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t6.jpg?sign=1739600880-a0wAkl6lSTBqUV5JJbeSZLjrIug8JCoU-0-86d022a92ed5d02420d6d0cb88976db5)
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a21.jpg?sign=1739600880-vISW2LDLympbb99KfcwR6XxYyk7fVF6w-0-37fa2993d536c4d488285a3a27046108)
图1.21 无转矩进动车轮的运动(有关此图的彩色版本请参见www.iste.co.uk/jaulin/robotics.zip)
此外:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/36t7.jpg?sign=1739600880-LrG1NN5L93VEXDzvSeqmE3sWBw72BvJv-0-f82fb339e9002a9db5b2e7bad35aa43b)
4)使用SYMPY库编写以下Python代码:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/37t1.jpg?sign=1739600880-AsBDzsyAoLPoFWktDN52DPDDUrEtTu6z-0-87bca381b6785ef0e0d238de8d5b53b4)
x0点处的矩阵J如图1.22所示。
可通过图1.23中的图示来理解带零的黄色块,弧表示差动延迟,例如,节点vr和p之间的弧意味着在代数上依赖于vr。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a22.jpg?sign=1739600880-E6DTDT0iNa7X5Gp5XMvvT1HFzDTagIR3-0-d190aa0c075c84f006d52b6664af3d72)
图1.22 x0点处演化函数的雅可比矩阵(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a23.jpg?sign=1739600880-jD7pvKB4t6GBgpHnKnKkVJ0Y4y26jvbe-0-ebcb8059da0c4f8907e8be8a7ef9852e)
图1.23 浮轮差动延迟图(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
矩阵J是分块三角形的,可以很容易地计算出特征多项式,由下式给出:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/38t3.jpg?sign=1739600880-FV6gc3wgxtASUauqNty5gyu4RGjLa06q-0-cf58cb857f8953f1d4e84cb19472c814)
当不存在进动时,项与事实情况一致,轮子以||wr||脉冲绕wr旋转,
和
对应于该进动。
如果轮子不是完全实心的,内部摩擦会减弱进动,旋转轴将与I的一个特征向量对齐,该向量可以是车轮平面的一个向量,也可以是车轮的轴(与车轮平面正交)。
习题1.13参考答案 (惯性系中的舒勒振荡)
1)因为地球静止不转动,则有:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/38t7.jpg?sign=1739600880-BRha9iVHuWn2V0btWuFgHWsdpS5vg3SC-0-b0e7c725bc59cf6d8946d961c0b8625b)
2)R2的所有欧拉角都是常数(对于R1)并且等于零,且不再作为状态变量出现。欧拉矩阵R(φ,θ,ψ)为常数。R2的状态方程变为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/38t8.jpg?sign=1739600880-zVsas0t61sVHWKEIV0s9SYYLdpLamgOX-0-9ac4a0a6522e9ecb008f8365cb923e16)
可以将其写为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/39t1.jpg?sign=1739600880-zHY0LRaSjqoZQrOSFnLWPqWcLFp7jOB5-0-ac8bf5bb656f83efcdab856ea57498e8)
3)所得到的轨迹如图1.24所示。从图中观察到一些振荡,称为舒勒振荡。
4)z=0,x=r,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/39t2.jpg?sign=1739600880-IGukLXD28Wt4qMiaqMrqUcozUewqFZI8-0-ebd3137a82726dd4cb9e71e17009957b)
特征值为,由于在0中有两个根,所以这个系统存在一些振荡,是不稳定的。
5)实际上,惯性单元没有完全初始化,因此便可找到一条与R2相似的轨迹,而对于R1而言是固定的。由于误差很小,线性近似是很现实的。如图1.25所示,惯性单元内部的积分方法返回一些不需要的振荡,对应于一个不是实际的解。这些振荡对应于一个为的舒勒周期。对于许多应用(例如在飞机上),大家知道这样的振荡是虚拟的,可以通过改进积分的方法来抑制这些舒勒振荡。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a24.jpg?sign=1739600880-TCRcarvlkEfCHyiKKh2qZRfMZBitap3W-0-db378fd570ea903023015f491b6eccb3)
图1.24 轨迹涂成蓝色的机器人R2和固定在o1中的机器人R1的转速和加速度相同
习题1.14参考答案 (控制用李氏括号)
1)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/39t5.jpg?sign=1739600880-TZZFQPevRR8hKqOtat5yhmESipbXqtpW-0-7a284607b6c061e7f2c885fff6d0f40f)
2)在不丧失一般性的情况下,对t=0给出其证明,并将使用以下符号:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/39t6.jpg?sign=1739600880-C4Gij7PLQvXAD65NQACOddaf7XXd5YdN-0-7946a084d5e0759822302e0571051fb7)
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a25.jpg?sign=1739600880-SeqeISFsLVkc2Zhe1kqBm4o4BVzOXxxY-0-56c9723105154138fe79eb7788bd6443)
图1.25 惯性装置返回的假周期轨迹,感觉和R1一样是静止的。相应的测量加速度涂成红色。b)图对应于R1的放大(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
对于给定的t和一个小的δ,有:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t2.jpg?sign=1739600880-R5GpwtOb0zBIrAXLB26uHOL1NSgFLlJU-0-0aa169d9b223030d2bae76e02c9940d8)
其中:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t3.jpg?sign=1739600880-eOMFzAYI62VauTXYMU728b5FKB4OIVMH-0-6fd5483d9b11d36b446082dbab2b09da)
因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t4.jpg?sign=1739600880-GKXWrWxgYwLGDoh2YZtwROfPVpbifSDJ-0-1ffd099277fd1910e7eebff75b75196a)
可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t5.jpg?sign=1739600880-6JvcuVl0M6LczNpk8BlSlZWrk3H99tIu-0-661592b133ed03a87be46d720e9122df)
相加可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t6.jpg?sign=1739600880-4Qk61SEGDTEbRqkV9Q0Mw8JkccTcoLMk-0-0a83379800b19b30c213b34251a759c5)
此时:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/40t7.jpg?sign=1739600880-mVeoa1AFZq8YsZVw1C1AIUMFosD3FiQn-0-dc97e011ff840585fc6b528e4ed2a7aa)
因此,
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t1.jpg?sign=1739600880-2UShsrxlcixm2sVhC8ud1Vs8iJIRz82V-0-6a8719ce434619f3833b68443765f597)
同理可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t2.jpg?sign=1739600880-wBwbzZpaX2pxwcR8xF2L6vn5jtLRqDJB-0-a45b9a4532e967fa511169f2c790a352)
这个结果可以通过重写δ→-δ,f→-g,g→-f,A0→-B0,B0→-A0直接从式(1.19)中获得,因此:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t3.jpg?sign=1739600880-ubTyH5k0IRKouWRpbc80UVNLsh8H73aU-0-3d1c1393cf695c4bcd04095c9c5e415e)
其结果是,使用周期序列,便可以沿着[f,g]方向移动。
3)已经证明,在4δ的时间周期内,我们向[f,g]方向移动了[f,g]δ2。这意味着我们遵循这个无穷小的场。将循环序列乘以标量α
R等于用α乘以f,g。那么,不得不用
乘以这个序列。如果º为负,则必须改变序列的方向。因此,循环序列为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t6.jpg?sign=1739600880-GOZ5Dn4MfD3VyMuGZH2B7jJHCPL0qUOF-0-fe786326d4ec7faeea101fed3bc02ddd)
式中,ε=sign(v)更改序列的方向(ε=1为顺时针方向,ε=-1为逆时针方向)。
4)如果想要跟踪a1f+a2g+a3[f,g],则须按该序列:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t7.jpg?sign=1739600880-NmJBgFCMboYkjc0o7N1wtP3uVbjdyWDl-0-b784a39c3a65b1cbd8c39795cd80a253)
式中,,且ε=sign(v)。
5)如果令x=(x,y,θ),则有:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/41t9.jpg?sign=1739600880-E6RVj7is48kNh1USycfwVdQsjIyYTaMi-0-4291e2577b96c881def2b872d038091f)
可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/42t1.jpg?sign=1739600880-ztKNzImu4ekeMNSUdF7xbSbvBihdAmo3-0-9795b32005761aed0a839451f44550ab)
此时便可横向移动汽车了。
6)如果把循环序列作为控制器,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/42t2.jpg?sign=1739600880-2vkfsknBD5dgEhqODSDp5XbT91dWLeGO-0-4d370bf10c50d6e75da0af6771bf20b3)
针对a=(0.1,0,0),a=(0,0,0.1),a=(-0.1,0,0),a=(0,0,-0.1)做了四个仿真模拟。取初始向量x(0)=(0,0,1),t[0,10],dt=0.01,便可得到图1.26所示的结果。经过观察,在每次模拟之后,到原点的距离大约为0.1×10=1。这与f(x)和[f,g]的范数等于1的事实一致。在此,并未给出a=(0,±0.1,0)的仿真,因为没有位移:汽车自己旋转。
7)可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/42t3.jpg?sign=1739600880-pWJeDEt91Et4iRCOTiIV97AYPuxfYEF0-0-58c98d6a917e55510a2015dfcf61873b)
取可得
,式中
。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a26.jpg?sign=1739600880-9iFbKg6lvZEvC7Ni4xQ6CGU2wve2oXeG-0-f2f189b254c4142a66d05115a91ac14b)
图1.26 a)基于李氏括号技术的控制器仿真,框架为[-1,1]×[-1,1]。b)相同的图片,但框架为[-0.2,0.2]×[-0.2,0.2]。为了避免图片中的重叠,这辆车的尺寸缩小了1/1000。前后亚通道的长度约为10cm(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
对于序列所需的方向:=(1,0,0),
=(−1,0,0),
=(0,−1,0),
=(0,1,0)。可得图1.27所示的结果。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a27.jpg?sign=1739600880-uzueBsYLZEQjeUSGOZr7leJUkt5U83WN-0-3da76ce91d1fd5d495b1afd231d8ffe3)
图1.27 a)汽车从0向所有主要方向行驶。框架为[-1,1]×[-1,1]。b)相同的图片,但框架为[-0.2,0.2]×[-0.2,0.2](有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
习题1.15参考答案 (跟踪赤道)
1)从一帧到另一帧的旋转矩阵为Rij=RiTRj,可得:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/43t2.jpg?sign=1739600880-MjLPTOLa09M3WfuG93XCn5oqzrfRiq83-0-077f9e976ae72f651d1978c3233ed285)
2)式(1.13)所示的运动学方程为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/43t3.jpg?sign=1739600880-vGveMgPPLinoXMlUqCiuV1xzT2kWRmQ5-0-e73ed950fad50f249e3a77fa053c714f)
在仿真模拟中(见图1.28),可观察到轨道对应于一个椭圆,这与卫星的行为是一致的。物体的旋转是由初始条件引起的。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a28.jpg?sign=1739600880-DgaYvdxJqAFI6lGQSIHKQq64uX9yqOzx-0-c46252ec024fa0692d0a1c6b545eb741)
图1.28 该机器人像卫星一样绕着地球转(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)
3)动态模型由运动学模型组成,可在其中添加以下状态方程以生成输入a3,w3(见图1.29):
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/43t4.jpg?sign=1739600880-WTv7Y4fQNpzqWzPu80UjIsHGpHnZwsW3-0-7212503135f6808056c26d98a7566825)
这个动态(左)块在状态变量中有w3。
在此来解释第一个等式:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/43t5.jpg?sign=1739600880-wQZZ4IxIYcO3KNvB3j7CqELJpbGEYXUU-0-adda2112f9d7929d877b1a9e9326df24)
由该摩擦项可得,机器人将停止相对于水的旋转,从而收敛到地球的旋转方程上。对于这个摩擦力,应该加上来自方向舵或螺旋桨的旋转。
第二个方程由三项组成:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/43t6.jpg?sign=1739600880-uCS6FSwyT7sDnCgwLeGhTMrJGGdHpTKQ-0-dd0779ae505003763714620d33e54396)
①由于摩擦而产生加速度。作为第一近似,可以假设加速度与机器人和流体之间的速度差成正比。由于流体的速度为vf=wE∧p,可得摩擦力所引起的加速度,在R3坐标系下近似为。
②流体在p处的加速度为:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/44t2.jpg?sign=1739600880-RfEavhBiDozMOJIgTg0EZ8lCIVzyf8Lh-0-f26de3ca123f23fd2d777ae8306b8830)
如果机器人相对于流体是静止的,并且具有与流体相同的密度,那么它将具有阿基米德力产生的加速度。现在,由于重力,将测量R3坐标系下加速度
。
③由螺旋桨产生的加速度ua3表示在机器人坐标系R3。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a29.jpg?sign=1739600880-fYoCQwJKZ7HxfXz0zAbOVTQII2cx8eoU-0-d4dce9453c404a2f6359fdcb145d7714)
图1.29 动力学模型
4)为了控制机器人的方向,考虑了一种位姿场方法,即在每个点p上关联一个机器人试图满足的姿态(用旋转矩阵R4表示)。例如,如果我们想沿着赤道从西到东,则可选择一个位姿场:
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/44t5.jpg?sign=1739600880-JIlI1DCciRcsaqOuogb9XoWqA3uS7K4P-0-2300c0e3ecc0cec047702967248c153f)
然后,为使R3近似于R4(p)的控制选择旋转向量,可得(见式(1.6)):
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/44t6.jpg?sign=1739600880-qxYWRidk7mRTvZ1x5mr3oiOKbgsM11dl-0-75426b853866144228331381fe6394bf)
其中,,
。相应仿真如图1.30所示。
![](https://epubservercos.yuewen.com/9D1A5D/21647389701428506/epubprivate/OEBPS/Images/1a30.jpg?sign=1739600880-6eex8Wcditu9HXcsCnn3x3OMGucnf2DU-0-269f36ca25dba9a1d326a3f90f520f77)
图1.30 机器人沿着赤道向东行驶(有关此图的彩色版本,请参见www.iste.co.uk/jaulin/robotics.zip)