- ANSYS Fluent中文版流体计算工程案例详解(2022版)
- 孙立军编著
- 540字
- 2023-08-28 18:55:58
1.2.4 有限体积法概述
有限体积法基于积分形式的守恒方程而不是微分方程,该方程描述的是计算网格定义的每个控制体。
三维对流扩散方程的守恒型微分方程如下:
![](https://epubservercos.yuewen.com/5629C6/27167024004695606/epubprivate/OEBPS/Images/26_01.jpg?sign=1739424372-e0qjNI1pfAx7itb8xMnzdNLiF89kUXJQ-0-b79c2beb08dba1a4949dce8b031e7eaa)
式中,ϕ是对流扩散物质函数,如温度、浓度。
式(1-24)用散度和梯度表示如下:
![](https://epubservercos.yuewen.com/5629C6/27167024004695606/epubprivate/OEBPS/Images/26_02.jpg?sign=1739424372-L75KVHBj9rLnYgUaxS2K1LEabKMVJADA-0-6276e806de2e8bbf4382ebe19f639484)
将式(1-25)在时间步长Δt内对控制体体积CV积分,可得
![](https://epubservercos.yuewen.com/5629C6/27167024004695606/epubprivate/OEBPS/Images/26_03.jpg?sign=1739424372-jSxR9USRIOqYMe8pE28pBbQkE2yljRU2-0-e18f608b0304786c76b0126bb98aee3e)
式中,散度积分已用格林公式化为面积积分,A为控制体的表面积。
该方程的物理意义是:Δt时间段和体积CV内ρϕ的变化,加上Δt时间段通过控制体表面的对流量ρuϕ,等于Δt时间段通过控制体表面的扩散量加上Δt时间段控制体CV内源项的变化。
例如,一维非定常热扩散方程为
![](https://epubservercos.yuewen.com/5629C6/27167024004695606/epubprivate/OEBPS/Images/26_04.jpg?sign=1739424372-prAk7fqhzAiOMeRJInI7ZbTTZVZudzJ1-0-80ed9a81888fa6fd937167b912df5a97)
Δt时间段的控制体内部积分式为
![](https://epubservercos.yuewen.com/5629C6/27167024004695606/epubprivate/OEBPS/Images/26_05.jpg?sign=1739424372-xQLkfx6sgyIDpZLWGsavPJ6LDjAWCOVj-0-6dcc3affdd8b156e304a5ed521a0aead)
式(1-28)可写成如下形式:
![](https://epubservercos.yuewen.com/5629C6/27167024004695606/epubprivate/OEBPS/Images/26_06.jpg?sign=1739424372-X2nBnZbRzCTvliFgA0LEHXhg17LOL5pw-0-ad155386baac17e4f21e6bf7d17a8f01)
式中,A是控制体面积;ΔV是体积,ΔV=AΔx,Δx是控制体宽度;是控制体中的平均源强度。
如图1-2所示,设t时刻的P点温度为,而t+Δt时刻的P点温度为TP,则式(1-29)可化为
![](https://epubservercos.yuewen.com/5629C6/27167024004695606/epubprivate/OEBPS/Images/26_09.jpg?sign=1739424372-QwgBp6ulDO45VAKc68tJMEKYya4A6eAm-0-bef2d85c1916481d41bb2e0d4644cf96)
![](https://epubservercos.yuewen.com/5629C6/27167024004695606/epubprivate/OEBPS/Images/26_10.jpg?sign=1739424372-ZgxZed02F0T79267kVCyGz4Q5NMHu5oN-0-ed0e7a2a7ea8ec73dc37d6abaa2f0e9f)
图1-2 一维有限体积单元示意图
为了计算式(1-30)右端的TP、TE和TW对时间的积分,引入一个权值θ=0~1,将积分表示成t和t+Δt时刻的线性关系:
![](https://epubservercos.yuewen.com/5629C6/27167024004695606/epubprivate/OEBPS/Images/26_11.jpg?sign=1739424372-wb9UxUGdgxRSkT3ZM0hA2pJAoBxLo8uF-0-3c70fc6e949b248fb5766c868b2e038f)
式(1-30)可写成
![](https://epubservercos.yuewen.com/5629C6/27167024004695606/epubprivate/OEBPS/Images/27_01.jpg?sign=1739424372-Nk1xgQlllLjnKfXkWSRxTieMHWytQsE0-0-739f50e556b85afee02d96729f760a0d)
式(1-32)右端第二项中t时刻的温度为已知,因此该式是t+Δt时刻TP、TE、TW之间的关系式。列出计算域上所有相邻三个节点上的方程,则可形成求解域中所有未知量的线性代数方程,给出边界条件后可求解代数方程组。